Community Acceptance of Wife-beating in Ethiopia: Is education an important correlate?

Presentation for Bahir Dar University, School of Graduate Studies

October 24, 2022

BACKGROUND

A regression analysis identified ".... low economic status, partner alcohol use, witnessing family violence, marital controlling behaviors, and community acceptance of wife-beating as significant predictors of domestic violence" in Ethiopia

Women living in communities with high acceptance of wife-beating were 1.4 times more likely to experience domestic violence than women living in communities with low acceptance of wife-beating (AOR = 1.39, 95% CI: 1.16, 1.66)."

Source: Seid, E., Melese, T. & Alemu, K. Spatial distribution and predictors of domestic violence against women: evidence from analysis of Ethiopian demographic health survey 2016. *BMC Women's Health* **21**, 334 (2021). <u>https://doi.org/10.1186/s12905-021-01465-4</u>

Problem: the study ignored the spatial autocorrelation of the dependent variable

"The study found spatial clustering of domestic violence cases in Ethiopia with Moran's I value of 0.26, Z score of 8.26, and *P* value < 0.01."

VIDEO SPATIAL AUTOCORRELATION https://youtu.be/M9ecMxVG6jQ

OBJECTIVES OF MY PRESENTATION

- 1. To bring attention to improper applications of spatial statistics by population/health researchers
- 2. To highlight the need to take into account Ethiopia's diversity when conducting spatial statistics
- 3. To highlight a Geographic Information System (GIS) tool by using as an example unweighted percentages of women who responded that wife-beating was okay

DATA SOURCE METHODOLOGY

- Data source: Ethiopia's 2016 Demographic and Health Survey (DHS)
 - Data processing using R-programing language
 - Spatial statistics using geographically weighted regression (GWR) an ArcGIS-Pro application

More about DHS

- Paid for by the United States Agency for International Development (USDA)
- Over 30 years
- 90 countries across Africa, Asia, Latin America/Caribbean, and Eastern Europe.
- In Ethiopia 2000, 2005, 2011, 2016

R-PROGRAMMING

Ethiopia's 2016 DHS files

- > #Couples' recode
- > DHS2016_Couple <- read.dta("D:/DHS2016/ETCR71DT/ETCR71FL.DTA")
- > nrow(DHS2016_Couple)
- [1] <mark>6141</mark>
- > #Household recode
- > DHS2016_HHold <- read.dta("D:/DHS2016/ETHR71DT/ETHR71FL.DTA")
- > nrow(DHS2016_HHold)
- [1] <mark>16650</mark>
- > #Individual recode
- >DHS2016_Wom <- read.dta("D:/DHS2016/ETIR71DT/ETIR71FL.DTA")</p>
- > nrow(DHS2016_Wom)
- [1] <mark>15683</mark>
- > #Births recode
- > DHS2016_Births <- read.dta("D:/DHS2016/ETBR71DT/ETBR71FL.DTA")
- > nrow(DHS2016_Births)##41392
- [1] <mark>41392</mark>
- >

Q: V744c It is the respondent's opinion that a husband is justified in hitting or beating his wife when she argues with him

V744A	Beating justified if wife goes out without tell	57	1	Ν	I	1	0	No	No
V744B	1 Yes 8 Don't know (m) 9 Missing (na) Not applicable Beating justified if wife <u>neglects the children</u> 0 No 1 Yes 8 Don't know (m) 9 Missing	- 58	1	N	I	1	0	No	No
v744c	Beating justified if wife argues with husband	59	1	N	I	1	0	No	NO
	0 No								
	8 Don't know (m) 9 Missing								
V744D	(na) Not applicable Beating justified if wife refuses to have sex w	60	1	N	I	1	0	No	No
V744E	(m) 9 Missing (m) 9 Missing (na) Not applicable Beating justified if wife <u>burns the food</u> 0 No 1 Yes 8 Don't know (m) 9 Missing (na) Not applicable	61	1	N	I	1	0	No	No

Q: V744c It is the respondent's opinion that a husband is justified in hitting or beating his wife when she argues with him A. Yes

B. No

R-programing (Regional)

#Regional proportions of yes/no answers to beatings if wife argues with husband WomArgReg <- table(DHS2016_Wom\$v101,DHS2016_Wom\$v744c) # WomArgReg # print table

STEP: 1

Conduct a Global Moran's I test of unweighted percentages of women with a "yes" response to Q: V744c

Global Moran's I

Global Moran's I is a measure of the overall clustering of the spatial data. It is defined as

$$I = rac{N}{W} rac{\sum_{i=1}^N \sum_{j=1}^N w_{ij} (x_i - ar{x}) (x_j - ar{x})}{\sum_{i=1}^N (x_i - ar{x})^2}$$

$$\tilde{x}_{V744c} = 37.02$$

where

- N is the number of spatial units indexed by i and j;
- x is the variable of interest;
- \$\overline{x}\$ is the mean of \$x\$;
- w_{ij} is a matrix of spatial weights with zeroes on the diagonal (i.e., $w_{ii}=0$);

- and
$$W$$
 is the sum of all w_{ij} (i.e. $W = \sum_{i=1}^N \sum_{j=1}^N w_{ij}$).

*Source: http://www.50northspatial.org/global-morans-i-spatial-autocorrelation/

SPATIAL Autocorrelation Global Moran's I

50	23	58	38
19	84	→ 16	55
78	13	83	27
38	75	26	41

Dissimilar values Negative

-				
	84	83	58	38
	78	75	50	27
888888	55	41	26	19
	38	23	16	13

Similar values Positive

19	83¢	84	13
38	55	58	26
50	41	38	75
16	78	23	75

Random pattern No autocorrelation

50	23	58	38
19←	84	→16	55
78	13	83	27
38	75	26	41

Dissimilar values Negative

19	83¢	84	♦13
38	55	58	26
50	41	38	75
16	78	23	75

Random pattern No autocorrelation

SPATIAL Autocorrelation Global Moran's I

T				
	84	83	58	38
	78	75	50	27
	55	41	26	19
	38	23	16	13

Similar values Positive

STTEP 2: SOLUTION

Apply the geographically weighted (local) regression (GWR) method with PCTWFBT_YE as (y) and PCNT_NOED as (X)*

HV109	Educational attainment
	0 No education
	1 Incomplete primary
	2 Complete primary
	3 Incomplete secondary
	4 Complete secondary
	5 Higher
	8 Don't know

*Source: https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1538-4632.1996.tb00936.x

Geographically Weighted Regression -GWR <u>https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1538-4632.1996.tb00936.x</u>

With GWR, each cluster is grouped with its immediate neighbors and is given a separate equation*

*Source: ESRI https://www.youtube.com/watch?v=ob18SuuAJGI

GWRcontd. Defining local

*Software finds an optimum distance by increasing distances by thirds (golden search) until the best local minima are found

Source: ESRI https://www.youtube.com/watch?v=ob18SuuAJGI

Geoprocessing History

GWRcontd. **Results** v744C (y) vs. education (x)

WARNING 110306: The final model didn't have the lowest AICc encountered in the Golden Search Results. WARNING 110259: At least one local regression had very limited variation after applying the weights. Use caution when interpreting the results.

/ indigolo Dotalio	
Number of Features:	643
Dependent Variable:	PCTWFBT_YE
Explanatory Variables:	PCNT_NOED
Number of Neighbors:	72

Model Diagnostics			
R2:	0.5123		
AdjR2:	0.4585		
AICc:	5489.83 14		
Sigma-Squared:	280.1931		
Sigma-Squared MLE	E: 252.3868		
Effective Degrees of	Freedom: 579.1888		

Golden Search Results			
#Neighbors	AICc		
30	5514.0940		
643	5667.8465		
264	5548.8335		
409	5569.4515		
175	5524.7560		
119	5500.4482		
85	5491.6356		
64	5492.1195		
98	5493.9578		
77	5489.8220		
72	5489.8314		

Succeeded at Friday, September 23, 2022 7:26:15 AM (Elapsed Time: 6.19 seconds)

Local R-Squared, Geographically Weighted Regression of Women's Response on Wifebeating (y) and education (x)

The assumption of independent residuals was not violated this time

SUMMARY

- The geographically weighted regression method (GWR) corrected for potential methodological flaws of a global least squares regression by producing <u>local</u> results that are unaffected by spatial autocorrelation
- Based on GWR, lack of education explained 46% (R² = 0.46) of the variability in the percentage of women responding "yes" to a question on wife-beating (V744c) nationally. However, this varied locally from near zero to a high of 0.71%.
- The mountainous north and rift valley regions with the highest correlations between education and wife-beating (R²: 0.40 – 0.71) may benefit from policies that prioritize education as a tool for countering women's acceptance of wife-beating
- Other explanatory variables, including urban-rural status, income, and DHS' Wealth Index, were omitted from the analysis due to the risk of multicollinearity
- Policy interventions aimed at protecting women against spousal abuse in Ethiopia need to be framed with local (not national or regional) sets of preventative measures in mind