The Social Geography of Women's Attitudes Toward Wife-beating in Ethiopia: A Contribution Towards Proper Application of Spatial Statistics

Presented at the Addis Continental Institute of Public Health October 20, 2023

Aynalem Adugna, PhD Public Health Research Scientist III State of California

Personal email: <u>AynalemA2012@gmail.com</u> Website: <u>http://www.ethiodemographyandhealth.org/</u> EthDemography dashboard: <u>Aynalem Adugna, Ethiopian Demography and Health (arcgis.com)</u>

CONTENTS

Objectives

- Background: GIS and Public Health (Spatial Statistics)
- Improper Application of Spatial Statistics to DHS data
- Ethiopian Women's Attitudes Towards Wifebeating: Testing for Spatial Autocorrelation
- Geographically Weighted Regression (GWR)
- Summary

OBJECTIVES

- 1. Provide brief backgrounds about GIS and use of GIS in public health
- 2. Bring attention to improper applications of spatial statistics to Ethiopia's Demographic and Health Survey (EDHS) data
- 3. Show simplified steps for assessing whether a variable is suitable for spatial ordinary least squares (OLS) linear regression by using the 2016 EDHS data on women's attitudes toward wife-beating
- Highlight a Geographic Information System (GIS) tool known as the Geographically Weighed Regression (GWR) by using as an example unweighted percentages of women who responded that wifebeating was okay (y) and their educational level (x)

BACKROUND: I. Geographic Information Systems (GIS)

What is GIS?

Geographic information systems (GIS) is:

- a computer-aided database management system that organizes and stores large amounts of multi-purpose data
- o a mapping and *spatial analytics** technology

*"The process of examining the locations, attributes, and relationships of features in spatial data through overlay and other analytical techniques in order to address a question or gain useful knowledge. Spatial analysis extracts or creates new information from spatial data".

Source: <u>https://libguides.tulane.edu/geographicinformationsystems/spatialanalysis</u>

BACKGROUND Contd. 16 New GIS Trends Driving the Future

#1 Real-Time Data
#2 Miniaturization of Sensors
#3 Geospatial AI (GeoAI)
#4 Self-Driving Vehicles
#5 Smart Cities
#6 3D and Digital Twins
#7 Machine Learning
#8 Artificial Intelligence

#9 Sustainability (climate change)
#10 Disaster Mitigation and Response
#11 Workflow Automation
#12 Light Detection and Ranging
(LiDAR)
#13 Geospatial Augmented Reality (AR)
#14 Subscription-based SaaS –
Software as a Service
#15 Image/Raster Analytics
#16 GIS in The Cloud

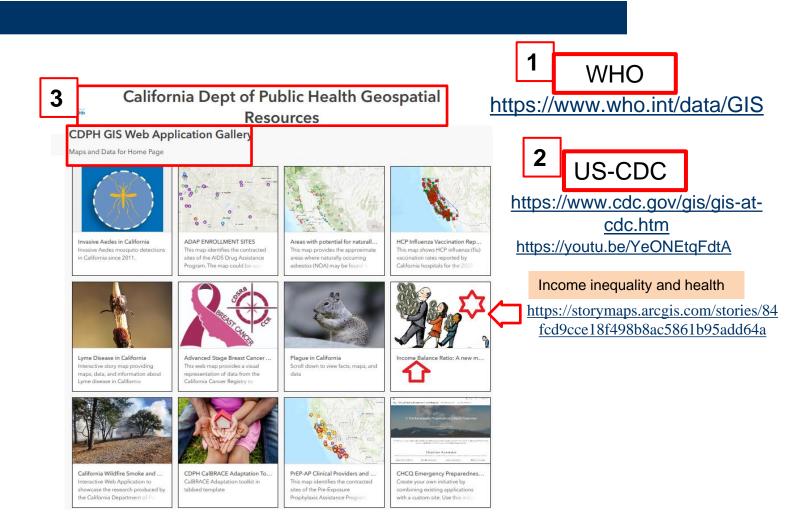
Source: https://mappitall.com/blog/gis-technology-trends-that-driving-the-future

BACKGROUND Contd. II. GIS and Public Health

The field of public health is:

- dedicated to improving the health of populations rather than individuals,
- o focused on prevention rather than treatment,
- o operationalized mainly in a governmental (rather than private) contexts
- This means that public health falls naturally within the domain of health sciences requiring spatial analysis
- This is because GIS allows potentially transformational capabilities for public health efforts by providing a digital lens for exploring the dynamic connections between people, their health and well-being, and changing physical and social environments

Source: Based on https://www.coursehero.com/file/115425040/GIS-AND-PUBLIC-HEALTHppt/


BACKGROUND Contd. GIS and Public Health

GIS helps public health practitioners:

- Optimize data collection and management
- Strengthen data analysis
- Strengthen outbreak infrastructure and support
- Map epidemic dynamics in near real-time
- Quickly plan and target response
- Rapidly communicate information
- Monitor changes in disease over time
- Plan, monitor intervention/eradication programs
- Aid emergency preparedness

Source: The University of North Carolina, School of Public Health. https://nciph.sph.unc.edu/focus/vol5/issue2/5-2Mapping_slides.ppt

Background contd....Examples : 1) WHO 2) US-Centers for Disease Control (CDC) 3) California Department of Public Health

BACKROUND contd. III. Spatial Statistics

... Is a Sub-field of Public Health GIS

Software Tools

SatScan (Scan Statistics)

https://www.satscan.org/

ESRI's ArcGIS Pro Spatial Statistics Tool Box

https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/an-overview-of-the-spatial-statistics-toolbox.htm

https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/an-overview-of-the-modeling-spatial-relationships-toolset.htm

S-Plus or R. A number of "add on" S-Plus packages particularly orientated to spatial applications are also available, in particular S+Spatial and S+GeoStat."

https://www.scielosp.org/pdf/csp/v17n5/6318.pdf

QGIS https://www.qgis.org/en/site/

Improper application of Spatial Statistics

....to Ethiopia's Demographic and Health Survey (EDHS) Data

Use of the Ordinary Least Squares (OLS) regression to analyse spatially autocorrelated data.

"Whenever there is statistically significant spatial autocorrelation of the regression residuals, the OLS model will be considered [mis-specified]. Consequently, results from OLS regression are unreliable. Be sure to run the <u>Spatial Autocorrelation</u> tool on your regression residuals to assess this potential problem."

https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/ordinary-least-squares.htm

VIDEO SPATIAL AUTOCORRELATION https://youtu.be/M9ecMxVG6jQ

Improper application ...contd.

Most published works featuring spatial analyses of EDHS data suffer from one or more flaws, including

- 1) application of bi- or multi-variate global (countrywide) Ordinary Least Square (OLS) regression in situations of high local variability
- 2) Application of OLS to a spatially autocorrelated response variable (y)
- lack of testing for multicollinearity of the chosen independent variables (x)
- 4) combining the use of spatial and non-spatial statistical methods
- publishing contradictory results from different spatial statistical applications - namely, ArcMap (or ArcGIS Pro) and SatScan - in the same paper

Source: The Social Geography of Women's Attitudes toward Wife-beating in Ethiopia: A Contribution Towards Proper Application of Spatial Statistics | Adugna | Journal of Geography and Geology | CCSE (ccsenet.org)

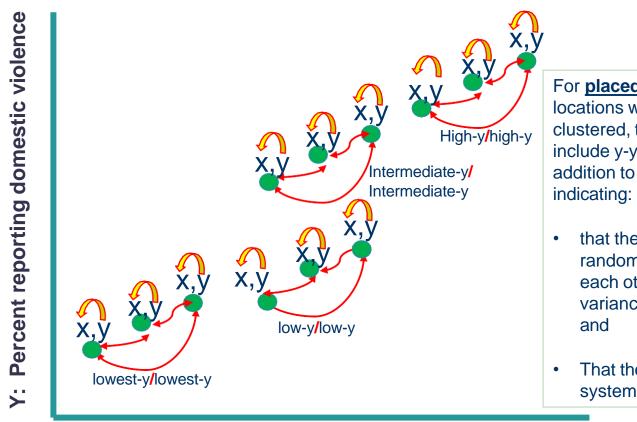
Example

Finding:

"The study found spatial clustering of domestic violence cases in Ethiopia with Moran's I value of 0.26, Z score of 8.26, and *P* value < 0.01."

Given the above finding, the validity of the following additional results is highly questionable

A regression analysis identified ".... low economic status, partner alcohol use, witnessing family violence, marital controlling behaviors, and community acceptance of wife-beating as significant predictors of domestic violence" in Ethiopia


Women living in communities with high acceptance of wife-beating were 1.4 times more likely to experience domestic violence than women living in communities with low acceptance of wife-beating (AOR = 1.39, 95% CI: 1.16, 1.66)."

Source: Seid, E., Melese, T. & Alemu, K. Spatial distribution and predictors of domestic violence against women: evidence from analysis of Ethiopian demographic health survey 2016. *BMC Women's Health* **21**, 334 (2021). <u>https://doi.org/10.1186/s12905-021-01465-4</u>

The use of a composite index as a dependent (y) variable is also problematic

Variables			Measurement				
Partner drinks alcohol	Domestic		Classified as 'yes' if partner drinks alcohol and 'no' otherwise				
Witnessed family violence	violence (composite		'Yes' or 'no' based on their answer to the question "as far as you know, your father ever hit your mother?"				
Attitude toward inter-personal violence - IPV	index?)		Women were asked if a husband is justified in hitting his wife for the following a woman's actions if she a) goes out without telling him; b) neglects the children; c) argues with him; d) refuses to have sex with him; e) burns the food. If they answer 'yes' to either of the above questions they were considered as accepting IPV; and as not accepting IPV otherwise				
Aringara Gunau Addis Bbaba	Legend Not Signif High-High High-Low Low-High Low-Low Eth_Regio	n Cluster Outlier Outlier Cluster					

Hypothetical distribution of sampling cluster percentages of women reporting domestic abuse (y-axis) and an independent variable (x-axis)

For **placed-based** data where locations with similar values are clustered, the relationships include y-y interactions in addition to y-x interactions, indicating:

- that the residuals are not random or independent of each other with constant variance (homoscedasticity), and
- That they, rather, show a systematic pattern

X: Independent variable

50	23	58	38
19←	84	→16	55
78	13	83	27
38	75	26	41

Dissimilar values Negative

19	83<	84	♦13
38	55	58	26
50	41	<mark>38</mark>	75
16	78	23	75

Random pattern No autocorrelation

SPATIAL Autocorrelation Global Moran's I

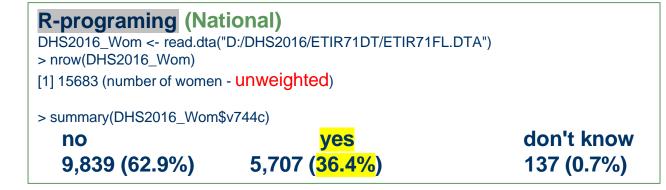
	84	83	58	38
Ţ	78	75	50	27
	55	41	26	19
	38	23	16	13
	~.			

Similar values Positive

Today's Topic: Women's Attitudes Towards Wife-beating

DATA SOURCE AND METHODOLOGY

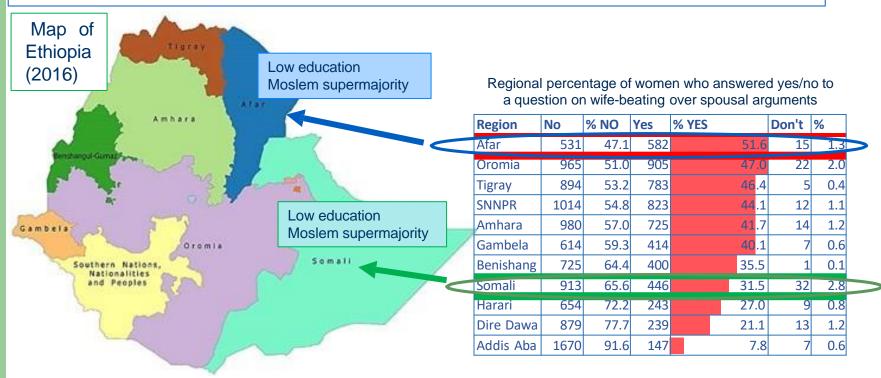
- Data source: Ethiopia's 2016
 Demographic and Health Survey (DHS)
 - Data processing using R-programing language
 - Spatial statistics using geographically weighted regression (GWR) an ArcGIS-Pro application

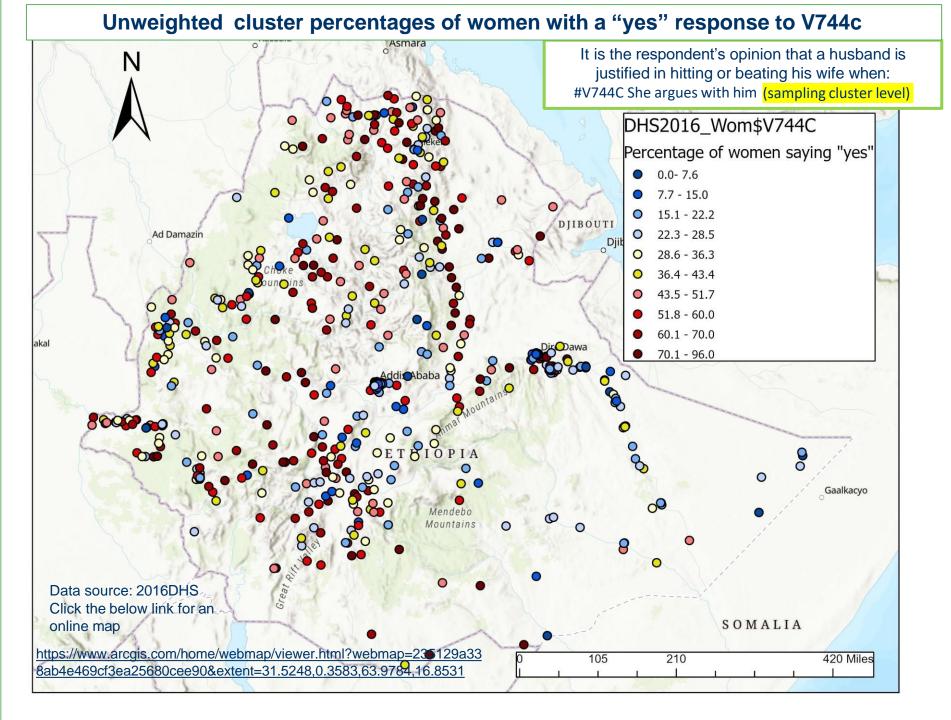

R-PROGRAMMING

Ethiopia's 2016 DHS files

- > #Couples' recode
- > DHS2016_Couple <- read.dta("D:/DHS2016/ETCR71DT/ETCR71FL.DTA")
- > nrow(DHS2016_Couple)
- [1] <mark>6141</mark>
- > #Household recode
- > DHS2016_HHold <- read.dta("D:/DHS2016/ETHR71DT/ETHR71FL.DTA")
- > nrow(DHS2016_HHold)
- [1] 16650
- > #Individual recode
- >DHS2016_Wom <- read.dta("D:/DHS2016/ETIR71DT/ETIR71FL.DTA")</p>
- > nrow(DHS2016_Wom)
- [1] <mark>15683</mark>
- > #Births recode
- > DHS2016_Births <- read.dta("D:/DHS2016/ETBR71DT/ETBR71FL.DTA")
- > nrow(DHS2016_Births)##41392
- [1] <mark>41392</mark>
- >

Q: V744c It is the respondent's opinion that a husband is justified in hitting or beating his wife when she argues with him


V744A	Beating justified if wife goes out without tell	57	1	N	I	1	0	No	NO
	1 Yes 8 Don't know (m) 9 Missing								
V744B	(na) Not applicable Beating justified if wife neglects the children	58	1	Ν	I	1	0	No	No
	0 NO 1 Yes								
	8 Don't know (m) 9 Missing								
V744C	(na) NOT applicable Beating justified if wife argues with husband 0 No	59	1	Ν	I	1	0	No	NO
	1 Yes 8 Don't know								
	(m) 9 Missing								
v744D	(na) Not applicable Beating justified if wife refuses to have sex w	60	1	N	Ι	1	0	No	NO
	0 NO 1 Yes								
	8 Don't know (m) 9 Missing								
v744E	(na) Not applicable Beating justified if wife burns the food	61	1	N	Ι	1	0	NO	NO
	0 NO 1 Yes								
	8 Don't know (m) 9 Missing (na) Not applicable								
								_	



Q: V744c It is the respondent's opinion that a husband is justified in hitting or beating his wife when she argues with him A. Yes B. No

R-programing (Regional)

#Regional proportions of yes/no answers to beatings if wife argues with husband WomArgReg <- table(DHS2016_Wom\$v<mark>101,</mark>DHS2016_Wom\$v<mark>744c)</mark> # WomArgReg # print table

Testing for the Presence of Spatial Autocorrelation

Two methodologies

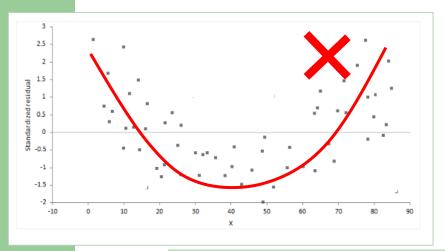
1.The residuals vs. predicted plot

Reference: https://analyse-it.com/docs/user-guide/fit-model/linear/residualplot#:~:text=A%20residual%20plot%20shows%20the,band%20around%20the%20identity%20line.

2. The Global Moran's I statistic

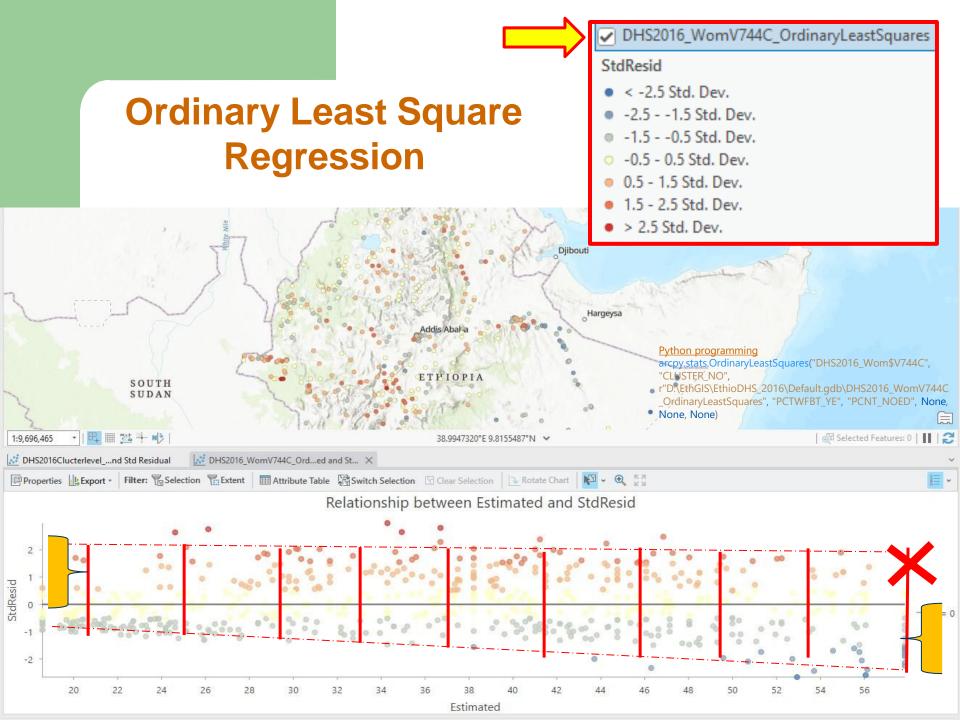
<u>Reference: https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/h-how-spatial-autocorrelation-moran-s-i-spatial-st.htm</u>

TEST-1, Residual vs. Predicted Plot



1.A linear relationship: x and y are linearly related 2.Independence: The residuals are random and independent of one another

3.Homoscedasticity: Constant variance of **residuals** against variable X or predicted Y and forming an approximately constant width band around the identity line


4.Normality: The residuals of the model are normally distributed

Source: https://www.statology.org/linear-regression-assumptions/Assumptions

Source: Adopted from https://analyse-it.com/docs/user-guide/fit-model/linear/residual-plot

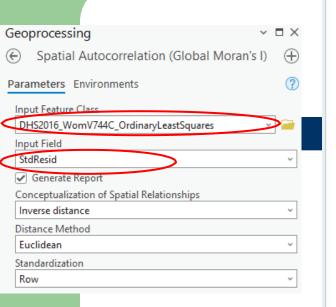
TEST: 2The Global Moran's I statistic

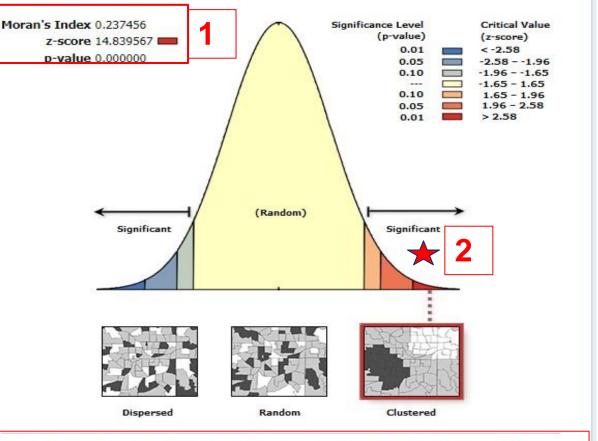
Conduct a Global Moran's I test of unweighted percentages of women with a "yes" response to Q: V744c

Global Moran's I

Global Moran's I is a measure of the overall clustering of the spatial data. It is defined as

$$I = rac{N}{W} rac{\sum_{i=1}^N \sum_{j=1}^N w_{ij} (x_i - ar{x}) (x_j - ar{x})}{\sum_{i=1}^N (x_i - ar{x})^2}$$


where


- N is the number of spatial units indexed by i and j;
- x is the variable of interest;
- \$\overline{x}\$ is the mean of \$x\$;
- w_{ij} is a matrix of spatial weights with zeroes on the diagonal (i.e., w_{ii} = 0);

• and
$$W$$
 is the sum of all w_{ij} (i.e. $W = \sum_{i=1}^N \sum_{j=1}^N w_{ij}$).

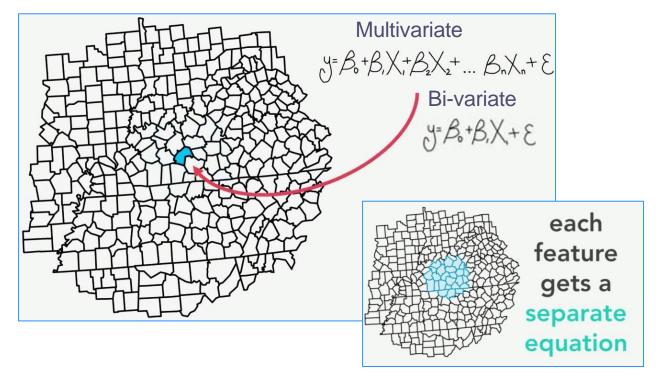
*Source: http://www.50northspatial.org/global-morans-i-spatial-autocorrelation/

II. Test of clustering (spatial autocorrelation): % saying "yes" to wife-beating

RESULT

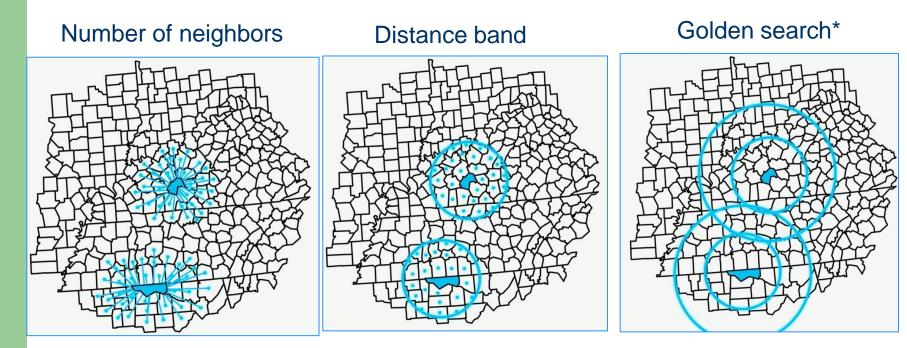
The dependent variable, V744c is not suitable for global ordinary least squares (OLS) regression due to spatial autocorrelation shown by the non-random (or clustered) distribution of residuals 3 Given the z-score of 14.839567, there is a less than 1% likelihood that this clustered pattern could be the result of random chance.

Global Moran's I Summary


Moran's Index	0.237456
Expected Index	-0.001558
Variance	0.000259
z-score	14.839567
p-value	0.000000

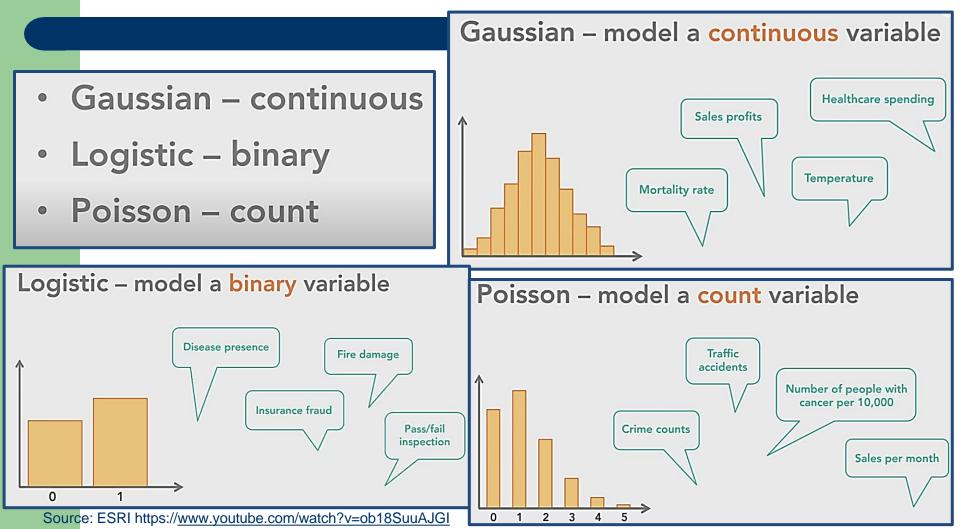
Python programming

arcpy.stats.SpatialAutocorrelation("DHS2016_WomV744C_OrdinaryLeastSquares", "StdResid", "GENERATE_REPORT", "INVERSE_DISTANCE", "EUCLIDEAN_DISTANCE", "ROW", None, None, None)


SOLUTION: Geographically Weighted Regression -GWR <u>https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1538-4632.1996.tb00936.x</u>

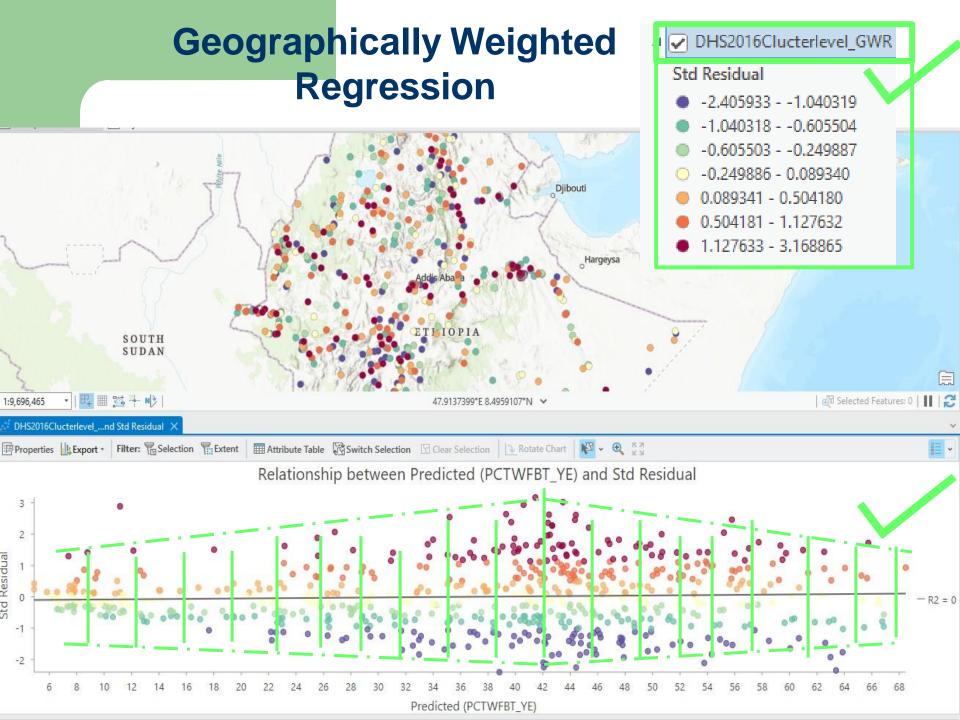
With GWR, each cluster is grouped with its immediate neighbors and is given a separate equation*

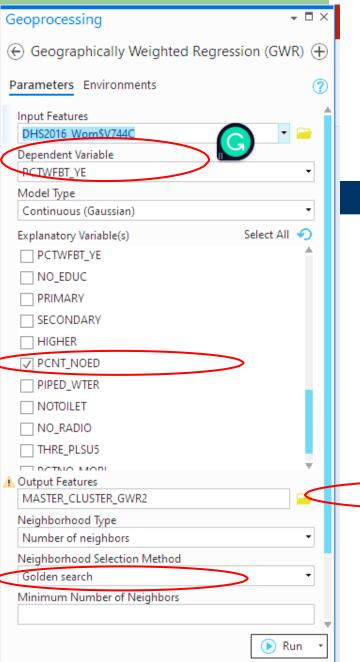
*Source: ESRI https://www.youtube.com/watch?v=ob18SuuAJGI


GWR contd. Defining local

*Software finds an optimum distance by increasing distances by thirds (golden search) until the best local minima are found

Source: ESRI https://www.youtube.com/watch?v=ob18SuuAJGI


GWR contd. Three Model Types



GWR contd. variables

	Dependent Variable (y)				
v744c	(na) NOT applicable Beating justified if wife argues with husband 59 1 N I 0 No 1 Yes 8 Don't know (m) 9 Missing	1	0	NO	NO

	Independent Variable (x)
HV109	Educational attainment <u>0 No education</u> 1 Incomplete primary 2 Complete primary 3 Incomplete secondary 4 Complete secondary 5 Higher 8 Don't know

Geoprocessing History

GWRcontd. Results v744C (y) vs. education (x)

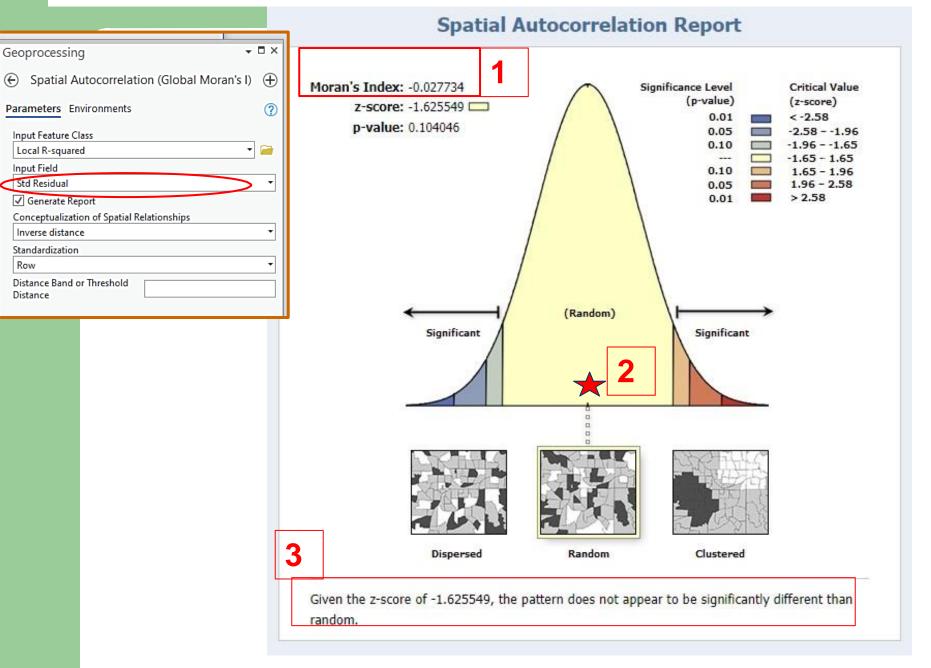
WARNING 110306: The final model didn't have the lowest AICc encountered in the Golden Search Results. WARNING 110259: At least one local regression had very limited variation after applying the weights. Use caution when interpreting the results.

----- Analysis Details -----Number of Features: 643 Dependent Variable: PCTWFBT_YE Explanatory Variables: PCNT_NOED Number of Neighbors: 72

 AdjR2:
 0.4585

 AlCe:
 5489.8314

 Sigma-Squared:
 280.1931


 Sigma-Squared MLE:
 252.3868

 Effective Degrees of Freedom:
 579.1888

Golden Search Results						
#Neighbors	AICc					
30	5514.0940					
643	5667.8465					
264	5548.8335					
409	5569.4515					
175	5524.7560					
119	5500.4482					
85	5491.6356					
64	5492.1195					
98	5493.9578					
77	5489.8220					
72	5489.8314					

Succeeded at Friday, September 23, 2022 7:26:15 AM (Elapsed Time: 6.19 seconds)

The assumption of independent residuals was not violated this time

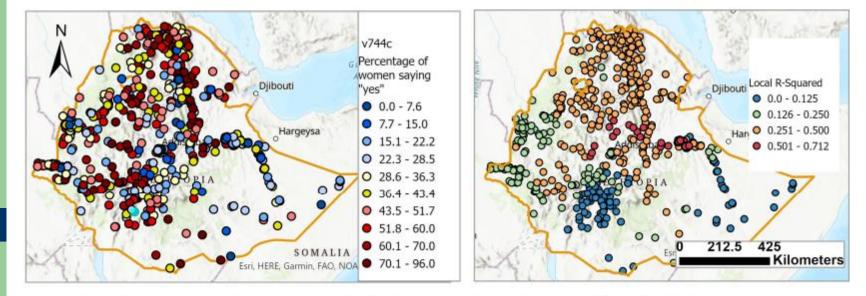


Figure 8A. percentage of women answering "yes" to a question on the acceptability of wife-beating Figure 8B. Local R-squared from geographically weighted regression (GWR)

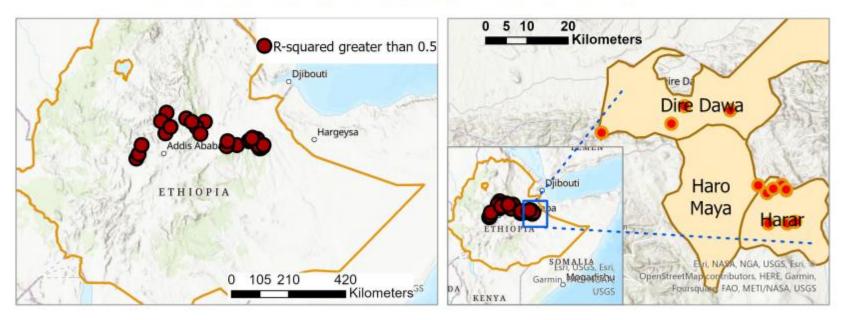
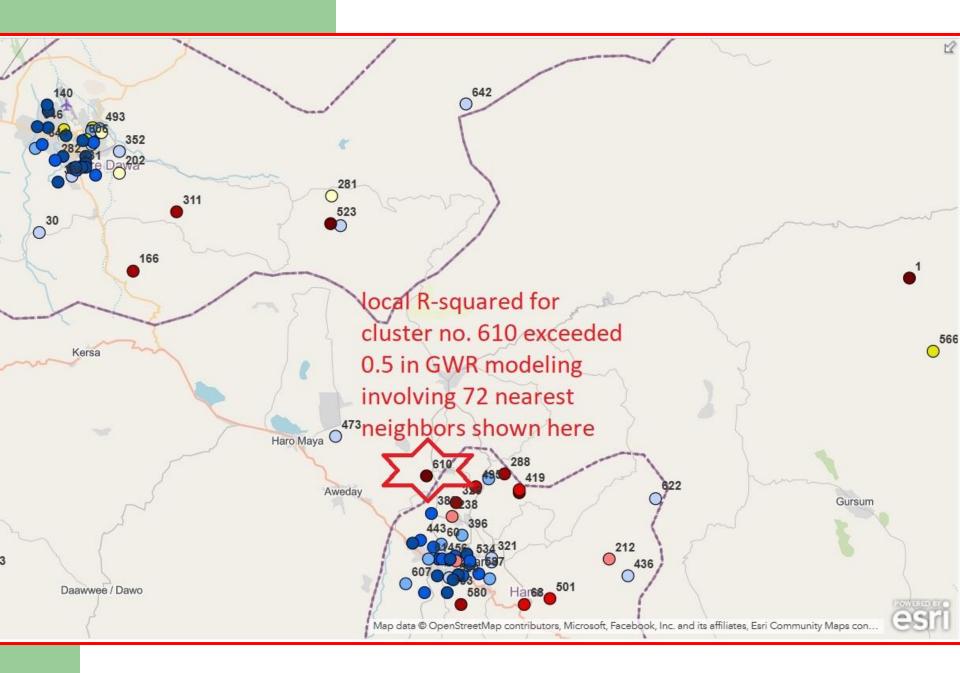


Figure 9A. Local R-squared >0.5, geographically weighted regression (GWR) Figure 9B. Final selection of sampling clusters

jgg.ccsenet.org


Journal of Geography and Geology

Vol. 15, No. 2; 2023

Table 2. Results of the Geographically Weighted Regression (GWR) for 12 Sampling Clusters	Meeting Study
Criteria	

	Cluster No	Wereda	% Wife-be ating okay (y)	%No education (x)	Intercept (a)	Coeff (β)	Predicte d (ŷ)	Residual	Std Res	Local R ²	CND* numbe r
-	<u>68</u>	Harar	60.0	60.0	6.8	0.58	41.7	18.3	1.1	0.55	17.2
	580	Harar	64.0	76.0	6.4	0.60	51.9	12.1	0.7	0.56	16.6
	501	Harar	54.2	87.5	7.0	0.58	57.4	-3.2	-0.2	0.54	17.6
	329	Harar	66.7	54.2	6.1	0.62	39.8	26.8	1.6	0.57	16.8
	357	Harar	80.0	60.0	6.6	0.60	42.7	37.3	2.3	0.55	17.6
	495	Harar	60.0	60.0	6.2	0.62	43.3	16.7	1.0	0.57	17.1
	419	Harar	56.0	52.0	6.6	0.60	37.9	18.1	1.1	0.55	17.6
Σ	610	Haro M.	92.6	92.6	5.6	0.65	65.7	26.9	1.7	0.59	17.0
	288	Harar	66.7	66.7	6.5	0.61	47.1	19.5	1.2	0.56	17.6
	441	Dire D.	54.2	91.7	4.9	0.51	51.3	2.9	0.2	0.51	17.0
	166	Dire D.	64.3	71.4	4.9	0.54	43.7	20.5	1.3	0.52	16.1
_	311	Dire D.	63.6	63.6	4.8	0.56	40.2	23.5	1.5	0.51	15.7

*CND (Condition number) indicates the level of local autocorrelation of the independent (x) variable; CND <30 is desirable.

SUMMARY

- The geographically weighted regression method (GWR) corrected for potential methodological flaws of a global least squares regression by producing local results that are unaffected by spatial autocorrelation
- The GWR model generated a list of twelve sampling clusters where most women respondents stated that wife-beating was acceptable while admitting to having had no formal education, and where the local R-squared exceeded 0.5 in GWR modeling involving 72 nearest neighbors per sampling cluster.
- Although the majority of the twelve sampling clusters are in Harari *Wereda* and *Kilil*, which got their name from members of the Harari ethnic group that are predominantly Muslim, it is difficult to pinpoint which factor or set of factors can be cited as causally associated with characteristics that placed them on the list.
- Other explanatory variables, including urban-rural status, income, and DHS' Wealth Index, were omitted from the analysis due to the risk of multicollinearity
- Policy interventions aimed at protecting women against spousal abuse in Ethiopia need to be framed with local (not national or regional) sets of preventative measures in mind

*Waldo Tobler, First law of geography, "Everything is related to everything else. But near things are more related than distant things." <u>https://gisgeography.com/tobler-first-law-of-geography/</u> Journal of Geography and Geology; Vol. 15, No. 2; 2023 ISSN 1916-9779 E-ISSN 1916-9787 Published by Canadian Center of Science and Education

Click below

<u>The Social Geography of Women's</u> <u>Attitudes Toward Wife-beating in</u> <u>Ethiopia: A Contribution Towards</u> <u>Proper Application of Spatial Statistics</u>