```
## FEBRUARY 2024
#Set working directory
   setwd("D:/DHS2016/ACIPH")
### DHS 2016 Analysis 2024
# Install the pacman ("package manager")
if (!require("pacman")) install.packages("pacman")
# Load contributed packages with pacman
pacman::p load(pacman, party, psych, rio, tidyverse)
# pacman: for loading/unloading packages
# party: for decision trees
# psych: for many statistical procedures
# rio: for importing data
# tidyverse: for so many additional reasons
# Load base packages manually
library(datasets) # For example datasets
# Save data to "df" (for "data frame")
# Import CSV files with readr::read csv() from tidyverse
##(df <- read_csv("data/StateData.csv"))
# Import other formats with rio::import() from rio
##(df <- import("data/StateData.xlsx") %>% as_tibble())
## Read 2016 DHS Stata data into R
## Data source https://www.dhsprogram.com/data/dataset_admin/index.cfm
## Lognin info required
## Use the foreign package to read Stata data from the DHS website
library(foreign)
#Bring in Births recode using read.data
```

DHS2016_Births <- read.dta("D:/DHS2016/ETBR71DT/ETBR71FL.DTA")

```
#Know the dimensions - number of rows and columns
dim(DHS2016_Births)
#[1]41392 1287
#Bring in couples' recode using read.data
DHS2016 Couple <- read.dta("D:/DHS2016/ETCR71DT/ETCR71FL.DTA")
#Know the dimensions - number of rows and columns
dim(DHS2016 Couple)
#[1] 6141 2528
#Bring in household recode using read.data
DHS2016_HHold <- read.dta("D:/DHS2016/ETHR71DT/ETHR71FL.DTA")
#Know the dimensions - number of rows and columns
dim(DHS2016 HHold)
#[1] 16650 1966
#Bringing in individual woman recode using read.data
DHS2016_Wom <- read.dta("D:/DHS2016/ETIR71DT/ETIR71FL.DTA")
#Know the dimensions - number of rows and columns
dim(DHS2016 Wom)
#[1] 15683
          5902
### AN ALTERNATIVE WAY OF BRINGING IN EXTERNAL DATA
# Import data with rio::import() from rio
##(df <- import("data/StateData.xlsx") %>% as_tibble())
# DATA REDUCTION: Selecting only the data columns you need
#The DHS 2016Wom file has 15683 rows and 5902 columns/fields/variables
#We want to select only FIVE variables to demonstrate steps followed for analyzing data used in a recent
paper titled: The Social Geography of Women's Attitudes Towards Wife-bearing in Ethiopia: A
Contribution Toward Proper Application of Spatial Statistics
DHS2016_WomReduced <- DHS2016_Wom %>% select(v001, v101, v005, v106, v744c) %>%
print()
dim(DHS2016_WomReduced)
```

#Unweighted CLUSTER frequency and proportions of women responding "yes" or "no" to whether or

not wife-beating was okay

ClasterFreqWB <- table(DHS2016_WomReduced\$v001,DHS2016_Wom\$v744c) # A will be rows, B will be columns

ClasterFreqWB # print table

Calculate the proportions of women responding "yes" or "no"

prop.table (ClasterFreqWB, 1)

Save UNWEIGHTED DHS2016_Wom wife-beating proportions to the DHS2016 Analysis2024 folder as CSV

write.csv(prop.table (ClasterFreqWB, 1), file = "UnweightedCLWBProp.csv")

#Unweighted REGION frequency and proportions of women responding "yes" or "no" to whether or # not wif-beating was okay

RegionFreqWB <- table(DHS2016_WomReduced\$v101,DHS2016_Wom\$v744c) # A will be rows, B will be columns

RegionFreqWB # print table

Calculate the proportions of women responding "yes" or "no" prop.table (RegionFreqWB, 1)

Save UNWEIGHTED DHS2016_Wom wife-beating proportions to the DHS2016 Analysis2024 folder as CSV

write.csv(prop.table (RegionFreqWB, 1), file = "UnweightedRegionWBProp.csv")

WEIGHTED DATA: How to use weights #weights example #use questionr package

library(questionr)

#Eth DHS, weights example, SAMPLING CLUSTER-level

#WtdCLWB_DHS16_Wom2 : weighted sampling cluster-level wife beating frequency

women's record file from Rio import ...DHS16_Wom2

#normwt = FALSE means do not normalize the weights

#na.rm = TRUE means delete records labeled NA (not applicable)

#na.show = FALSE means do not show removed NAs

print()

```
WtdCLWifeBeating <- wtd.table(DHS2016_WomReduced$v001, y=DHS2016_WomReduced$v744c,
       weights = DHS2016 WomReduced$v005/1000000, ##DHS advises dividing weights by a million
          normwt = FALSE, # do not normalize the weight na.rm = TRUE, #rewmove NAs
          na.show = FALSE)
WtdCLWifeBeating
## Save WtdCLWB DHS16 Wom to a folder as CSV
write.csv(prop.table (WtdCLWifeBeating, 1), file = "WeightedClusterWBProp.csv")
WtdRegionWifeBeating <- wtd.table(DHS2016_WomReduced$v101, y=DHS2016_WomReduced$v744c,
           weights = DHS2016_WomReduced$v005/1000000,
           normwt = FALSE, na.rm = TRUE,
           na.show = FALSE)
WtdRegionWifeBeating
## Save WtdCLWB DHS16 Wom to a folder as CSV
write.csv(prop.table (WtdRegionWifeBeating, 1), file = "WeightedRegionWBProp.csv")
#HOUSEHOLD RECODE, February 2014
# Data reduction applied to DHS Household recode file: select only the fields or columns needed for
analysis
#CLUSTER-level analysis
#Household recode
DHS2016 HHold <- read.dta("D:/DHS2016/ETHR71DT/ETHR71FL.DTA")
dim(DHS2016 HHold)
#[1] 16650 1966
## Household file data reduction
#The DHS 2016HHold file has 16650 rows and 1966 columns/fields/variables
# We would like to choose just six variables to conduct background analysis 1) HV001: cluster number, 2)
HV201: source of drinking water, 3) HV205: type of toilet facility, 4) HV206: household has electricity
(yes, no), 5) HV207: radio ownership, 6) HV005 sample weight
DHS2016_HHReduced <- DHS2016_HHold %>% select(hv001, hv005, hv201, hv205, hv206,
hv207,hv270) %>%
```

```
dim(DHS2016_HHReduced)
```

```
#WtdWatrDHS2016_HHold: weighted data SOURCE OF WATER
WtdWatrDHS2016 HHold <- wtd.table(DHS2016 HHReduced$hv001, y=DHS2016 HHReduced$hv201,
            weights = DHS2016_HHReduced$hv005/1000000,
             normwt = FALSE, na.rm = TRUE,
             na.show = FALSE)
## Save WtdRegED_DHS2016_Wom2 (region-level wife-beating, weighted) to a folder as CSV
write.csv(prop.table (WtdWatrDHS2016_HHold, 1), file = "WeightedClusterWaterSourceProp.csv")
#DHS2016 HHoldWTTlt, weighed cluster-level type of toilet
#WtdDHS2016 HHoldWTTlt: weighted data TOILET FACILITIES
WtdDHS2016_HHoldWTTlt <- wtd.table(DHS2016_HHReduced$hv001, y=DHS2016_HHReduced$hv205,
             weights = DHS2016 HHReduced$hv005/1000000,
            normwt = FALSE, na.rm = TRUE,
            na.show = FALSE)
## Save WtdDHS2016_HHoldWTTlt (region-level toilet facilities to a folder as CSV
write.csv(prop.table (WtdDHS2016_HHoldWTTlt, 1), file = "WeightedClusterToiletTypeProp.csv")
#WtdDHS2016 HHoldWTRadio, weighed cluster-level household has RADIO
#WtdDHS2016 HHoldWTRadio: weighted data Radio Ownership
WtdDHS2016 HHoldWTRadio <- wtd.table(DHS2016 HHReduced$hv001,
y=DHS2016 HHReduced$hv207,
             weights = DHS2016_HHReduced$hv005/1000000,
             normwt = FALSE, na.rm = TRUE,
             na.show = FALSE)
## Save WtdDHS2016_HHoldWTTlt (region-level toilet facilities to a folder as CSV
write.csv(prop.table (WtdDHS2016_HHoldWTRadio, 1), file =
"WeightedClusterRadioOwnershipProp.csv")
```

```
#DHS2016_HHoldWTElectric, weighed cluster-level household has Electricity
```

Save WtdDHS2016_HHoldWTTlt (region-level toilet facilities to a folder as CSV write.csv(prop.table (DHS2016_HHoldWTElectric, 1), file = "WeightedClusterElectricityProp.csv")

DHS2016_HHoldWealthIndex <- wtd.table(DHS2016_HHReduced\$hv001, y=DHS2016_HHReduced\$hv270,

weights = DHS2016_HHReduced\$hv005/1000, normwt = FALSE, na.rm = TRUE, na.show = FALSE)

Save WtdDHS2016_HHoldWTTlt (region-level toilet facilities to a folder as CSV write.csv(prop.table (DHS2016_HHoldWealthIndex, 1), file = "WeightedClusterWealthIndexProp.csv")